Quantifying Cyclic Variability in a Multi- Cylinder Hcci Engine with High Residuals

نویسندگان

  • Erik Hellström
  • Jacob Larimore
  • Anna Stefanopoulou
چکیده

Cyclic variability (CV) in lean HCCI combustion at the limits of operation is a known phenomenon, and this work aims at investigating the dominant effects for the cycle evolution at these conditions in a multi-cylinder engine. Experiments are performed in a four-cylinder engine at the operating limits at late phasing of lean HCCI operation with negative valve overlap (nvo). A combustion analysis method that estimates the unburned fuel mass on a per-cycle basis is applied on both main combustion and the nvo period revealing and quantifying the dominant effects for the cycle evolution at high CV. The interpretation of the results and comparisons with data from a single-cylinder engine indicate that, at high CV, the evolution of combustion phasing is dominated by low-order deterministic couplings similar to the single-cylinder behavior. Variations, such as in air flow and wall temperature, between cylinders strongly influence the level of CV but the evolution of the combustion phasing is governed by the interactions between engine cycles of the individual cylinders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Adaptive Residual Mass Estimation in a Multicylinder Recompression Hcci Engine

This work presents two advances to the estimation of homogeneous charge compression ignition (HCCI) dynamics. Combustion phasing prediction in control-oriented models has been achieved by modeling the in-cylinder temperature and composition dynamics, which are dictated by the large mass of residuals trapped between cycles. As such, an accurate prediction of the residual gas fraction as a functi...

متن کامل

Effects of Direct Fuel Injection Strategies on Cycle-by-Cycle Variability in a Gasoline Homogeneous Charge Compression Ignition Engine: Sample Entropy Analysis

In this study we summarize and analyze experimental observations of cyclic variability in homogeneous charge compression ignition (HCCI) combustion in a single-cylinder gasoline engine. The engine was configured with negative valve overlap (NVO) to trap residual gases from prior cycles and thus enable auto-ignition in successive cycles. Correlations were developed between different fuel injecti...

متن کامل

Computational study on the effects of exhaust gas recirculation on thermal and emission characteristics of HCCI diesel engine

In this paper, a computational in-cylinder analysis of HCCI diesel engine was carried out using IC Engine FORTE (ANSYS 18.2) software package. The analysis used pre-defined industry standard CHEMKIN format for specifying a chemical reaction mechanism during the combustion duration. The investigation was carried out for the effects of various EGR mass percentages on the thermal and emission char...

متن کامل

Experimental study of combustion noise level in LTC engine

In recent years, promising methods have been used to increase thermal efficiency, reduce nitrogen oxide and particle matter, which can be described as an example of an ethanol fuelled HCCI engine. But despite the many benefits of these engines, they continue to face problems such as increasing carbon monoxide production, unburned hydrocarbon, and producing combustion noise at high loads. In thi...

متن کامل

Controlling the Power Output and Combustion Phasing in an HCCI Engine

In development of Homogeneous Charge Compression Ignition (HCCI) engines, simultaneous control of combustion phasing and power output has been a major challenge. In this study, a new strategy is developed to control the engine power output and combustion phasing at any desired operating condition. A single zone thermodynamic model coupled to a full kinetic mechanism of Primary Reference Fuels (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012